

Aesthetic calculation and analysis of road environment on rural roads

Reporter:

Weixi Ren, Ph.D. Candidate College of Transportation Engineering, Tongji University

ABOUT MYSELF

WEIXI REN, Ph.D candidate

B.S., Civil Engineering, Tongji University 2016.9~2020.8

- **GPA:** 90.21(100), Ranking: 1/39
- Awards: University-level Tongji Scholarship of Excellence, First Prize
 (1%); Outstanding Graduate Award of Tongji University (5%)

Ph.D. Candidate in Transportation Engineering, Tongji University

Research interests

Driver Visual Perception

Driving Risk Analysis

Traffic data analysis

Skills

Computer proficiency: Python, Matlab

Software: AutoCAD, Vissim, Photoshop

Data processing: Naturalistic driving data, Driving simulator data, Eye-tracking data, EMG, ECG, EEG data

Naturalistic Driving Experiment

More than 50000 kilometers

Two-way two-lane rural roads in five Chinese provinces:

Tibet, Anhui, Shandong, Jiangxi, and Zhejiang

Diverse surrounding landscapes

Driver	Min	Max	Mean	SD
Age	23	50	32.9	7.1
Gender	9 females (21%)		33 males (79%)	
Driving years	3	22	16	5.4

Data Collection

GARMIN GDR35 driving recorder

Road environment perceived by driver

Questionnaire survey

How would you rate the aesthetic score of this road environment?

Dataset

A total of 2,000 road environment images with aesthetic scores were obtained

Road environment features

Semantic feature

reflects the composition of road environments

Color feature

reflects the color distribution of road environments

Texture feature

reflects the texture composition of road environments

Aesthetic features

Diversity feature

reflects the richness of road environment features

Unity feature

reflects the coherence of road environment features

Symmetry feature

reflects the presence of vertical, horizontal, or other symmetrical relationships

Evaluation indicators of road environment aesthetics

Semantic diversity

Color diversity

Texture diversity

Semantic unity

Color unity

Texture unity

Semantic symmetry

Color symmetry

Texture symmetry

Road environment features

Semantic feature

Road environment ResNet STAGE2 STAGE 1 Semantic segmentation network Road landscape Semantic feature Protection Semantic image Sky

Color feature

Texture feature

Diversity feature

Semantic diversity

$$Div_{sem} = \sum_{i=1}^{C} p(c_i) \log_2(p(c_i))$$

Color diversity

$$rg = R - G$$

$$yb = (R + G)/2 - B$$

$$\sigma_{rgyb} = \sqrt{\sigma_{rg}^2 + \sigma_{yb}^2}$$

$$\mu_{rgyb} = \sqrt{\mu_{rg}^2 + \mu_{yb}^2}$$

$$Div_{col} = \sigma_{rgyb} + 0.3\mu_{rgyb}$$

Texture diversity

$$Div_{tex} = \frac{1}{3} [Var(\mu_i) + Var(\sigma_i^2) + Var(H_i)]$$

Road environment

Unity feature

Semantic unity

$$Uni_{sem} = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} Canny(i,j)}{M \times N}$$

Color unity

Texture unity

$$Uni_{tex} = \frac{\sum_{i=1}^{M} std(Tex_i)}{M}$$

Road environment

Symmetry feature

Semantic symmetry

$$Sym_{sem} = \sum_{i=1}^{N} \left| p_i^l - p_i^r \right|$$

Color symmetry

$$Sym_{col} = \frac{\sum_{j=1}^{M} \sum_{i=1}^{\frac{N}{2}} \left| Col(P(i,j)) - Col(P(M-i,j)) \right|}{M*N}$$

Texture symmetry

$$Sym_{tex} = \frac{\sum_{j=1}^{M} \sum_{i=1}^{\frac{N}{2}} \left| Tex(P(i,j)) - Tex(P(M-i,j)) \right|}{M*N}$$

Road environment

XGBoost Algorithm. XGBoost (Extreme Gradient Boosting) is an ensemble learning algorithm based on gradient-boosted decision trees, which can effectively perform data regression.

SHAP. SHAP is a method from game theory that explains how much each feature contributes to the final prediction, making the model's decision-making process clearer.

THANKS!

